
Romanian Reports in Physics 77, 110 (2025)

SELF-SIMILAR SOLUTIONS OF THE TWO DIMENSIONAL HEAT
DIFFUSION EQUATION FOR INFINITE HORIZON
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Abstract. In this article the two dimensional heat diffusion equation is studied.
We consider a system for infinite horizon, the heat can diffuse without spatial constraint.
In case of polar coordinates one have a radial and an angular part of the spatial variation.
With an appropriate self-similar transformation, we arrive to an ordinary differential
equation. The equation admits a countable set of solutions which can be obtained by
an algebraic method. These solutions decay in space and in time, the latter is a power
law decay with different exponents for different solutions. The diffusion equation with
a source term is also discussed by the self-similar method.
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1. INTRODUCTION

The transfer of heat is one of the most common phenomenon which surround
us, which determines fundamental processes from technical applications to living
systems. The study of heat conduction dates back among the others to very early
works of Fourier, and by further developments more complex results have been found
[1, 2]. In related context, the phenomena of spreading or slow penetration is also im-
portant in a numerous aspects of life, in nature or engineering [3–5]. Regarding
mathematical analysis of heat and mass diffusion, thorough studies have been real-
ized in [6], and detailed works regarding different cases, with boundary conditions
on compact domain and explicit applications can be found in [7, 8].

The fundamental solution of the one dimensional mass or heat diffusion equa-
tion for infinite horizon, when a finite amount of mass or energy can diffuse without
special finite constraints, is the Gaussian solution. This solution have been discussed
in the references mentioned above [3, 6], and also in other works like [9].
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The one dimensional problem of mass or heat diffusion have been studied with
certain methods, and Bluman and Cole have arrived to results presented in [10]. The
method used, recovers the Gaussian form and related expressions which show that in
the exponent not only x2/t on some power is possible, and one can also find some
slight generalizations of this argument.

The problem for infinite horizon have got a new development, with the works
[11, 12], where explicit solutions of the one dimensional case are given beyond Gaus-
sian. The countable set of even and odd solutions of the diffusion equation for spa-
tially extended one dimensional system are presented in [13].

In this study we focus on the two dimensional heat diffusion equation with
infinite horizon. Regarding the case of finite horizon, relevant engineering aspects
are discussed in [8].

On general grounds heat conduction occur in different mediums with corre-
sponding heat transfer [14, 15]. The heat diffusion equation has also similarities to
the mass or particle diffusion [16]. An important application of the two dimensional
diffusive case is related to agar diffusion, where the spreading of certain substances
is studied [17, 18]. Assuming that a substance can diffuse in agar, its spreading may
cause suppression of bacterial growth in case of antibiotics [19, 20]. The method can
provide relatively fast result on the effects of antimicrobial agents. The area where
these substances acts form an inhibition zone. The size of this domain shows the ef-
fectiveness of the substance on microbes. The agar diffusion method can be used both
for synthetic and extracted – e.g. plant extracts – antimicrobial substances. Diffusion
with convection occur in lungs during respiration [21, 22]. The features of diffusion
with reaction, with possible cross effects, have been studied in [23, 24]. Regarding
biological aspects of diffusion certain number of studies can be found. The features
of Brownian motion are described and mathematical models of it has been presented
in [25]. Discrete models of diffusion have wide application area and they are used in
different scientific fields [26–28]. The two dimensional diffusion problem has impor-
tant application in food industry [29]. Interesting applications related to heat transfer
one may find in area of micro-thermoelectric cooling [30], thermal management of
batteries [31, 32], and in case of nanofluids [34–36]. Further generalizations are the
diffusion equations, where one may find concentration dependence of diffusion co-
efficient [37–39]. Numerical methods for solving the equations related to diffusion
or heat transfer in different problems are presented in [40]. Self-similar propagation
of optical beams has been studied in [41].

The heat diffusion equation in general reads as follows

∂T

∂t
=D∇2T, (1)

where D is the heat diffusion coefficient. In this work, we suppose that the diffusion
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coefficient is constant in the domain, which is studied.

2. SELF-SIMILAR ANALYSIS

The heat equation in one spatial dimension have been analyzed in the consid-
erable previous work [10], where the idea of a specific change of variables is also
mentioned. The work presents the basic idea of the self-similar transformation, and
for the diffusion problem a Boltzmann type of change of variables is used: x/

√
t.

Making a step further, a more general transformation have been applied to this
one dimensional problem by Mátyás and Barna, which is the following:

T (x,t) =
1

tα
f
( x
tβ

)
. (2)

Applying this transformation, it turned out, that β = 1/2 and α can be an arbitrary
value [11]. For each α one obtains a specific solution. The sets of countable solutions
related to integer or half integer values of α have certain symmetries – being odd or
even –, and they have been presented in [13].

In case of two dimensions the equation (1) has the form

∂T

∂t
=D

1

r

∂

∂r

(
r
∂T

∂r

)
+D

1

r2
∂2T

∂θ2
. (3)

If we suppose spatial isotropy, when there is no angle dependence, then only
the radial terms remain

∂T

∂t
=D

∂2T

∂r2
+D

1

r

∂T

∂r
. (4)

One can apply in this case a similar transformation

T (r, t) =
1

tα
f

(
r√
t

)
. (5)

In the following we use the variable

η = r/
√
t. (6)

Finally we obtain the following differential equation

−αf − 1

2
η
df

dη
=D

1

η

df

dη
+D

d2f

dη2
. (7)

The general solutions of this equation can be expressed in terms of Kummer functions
as it is mentioned in [43].
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3. SOLUTIONS OF THE TRANSFORMED EQUATION

However the sum of the linear combination of Kummer functions can be quite
a complicate expression, in case the α= 1 we expect that a classical solution will be
recovered. Inserting in equation (7) the function

f(η) = e−
η2

4D , (8)

one finds, that it fulfills the equation (7). Consequently we get the generic solution
for two dimension

T (r, t) =K
1

t
e−

r2

4Dt , (9)

where K is a constant, which should be fixed, by the initial or boundary conditions
of the problem. This function one can see in Fig. 1.

We mention, that we give the solutions with the diffusion coefficient in the
formula, as it is for example in (9), so that they can be used in or compared with ex-
perimental works, in a relatively direct way. Regarding our graphical representations
we take D = 1. An alternative possibility is to use the variable t′ =Dt; in this case

the solution can be written as T (r, t) =K ′ 1t′ e
− r2

4t′ , with K ′ =KD.

Fig. 1 – Solution of the radial heat equation for α= 1, with K = 1, and D has unit value.
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In case α = 2 we have the conjecture, that the solution of the equation can be
searched in the following form

f(η) = e−
η2

4D
(
K0+K1η

2
)
. (10)

This yields for the derivative of the function
df

dη
=−e−

η2

4D
η

2D
(K0+K1η

2)+e−
η2

4D 2 η K1. (11)

We insert this expression in the original equation (7) and it turns out, that the form
(10) is solution of the equation if

K1 =−
K0

4D
. (12)

Correspondingly, the form of the function f for α = 2 is given by the following
expression

f(η) = e−
η2

4D (K0+K1η
2) =K0 e

− η2

4D

(
1− 1

4D
η2
)
. (13)

The complete solution related to this shape function is

T (r, t) =K0
1

t2
e−

r2

4Dt

(
1− 1

4D

r2

t

)
. (14)

This function one can see on Fig. 2.
In case α= 3 we have the consideration, that the function f has the form

f(η) = e−
η2

4D
(
K0+K1η

2+K2η
4
)
. (15)

The derivative of this function is

f ′ =
df

dη
=−e−

η2

4D
η

2D
(K0+K1η

2+K2η
4)+e−

η2

4D 2(K1 η+2K2η
3). (16)

Inserting this expression in the original equation (7), we obtain the following rela-
tions for the coefficients

K1 =−
K0

2D
, (17)

and

K2 =−
K1

16D
=

K0

32D2
. (18)

These relations imply, the following form for the shape function

f(η) =K0e
− η2

4D

(
1− 1

2D
η2+

1

32D2
η4
)
. (19)

The complete solution in terms of time and space variables reads as follows

T (x,t) =K0
1

t3
e−

r2

4Dt

(
1− 1

2D

r2

t
+

1

32D2

r4

t2

)
. (20)
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Fig. 2 – Solution of the two dimensional heat equation for α= 2, K0 = 1, D set to unity.

The form of T (r, t) on a three dimensional plot one can see on Fig. 3.
For α= 4 we look for the following series expansion for f

f(η) = e−
η2

4D
(
K0+K1η

2+K2η
4+K3η

6
)
. (21)

Inserting this form into the equation (7), we arrive to the following ratio of the coef-
ficients

K1

K0
=−3

4
, (22)

and
K2

K1
=−1

8
, (23)

and
K3

K2
=− 1

36
. (24)

Finally we get for the form of the shape function

f(η) =K0e
− η2

4D

(
1− 3

4D
η2+

3

32D2
η4− 1

384D3
η6
)
. (25)
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Fig. 3 – Solution of the heat equation for α= 3, K0 = 1, D has unit value.

The complete solution T (x,t) of diffusion equation is

T (r, t) =K0
1

t4
e−

r2

4Dt

(
1− 3

4D

r2

t
+

3

32D2

r4

t2
− 1

384D3

r6

t3

)
. (26)

This solution of T (r, t) one can see on Fig. 4.
The solutions above are symmetric relative to the space variable r, with the

property, that at +∞ and −∞ these solutions vanishes.
As we can see, each function fulfill the equation of diffusion, consequently any

linear combination of it is a solution of the equation. In fact more linear combina-
tions are possible, if one take two or more specific solutions presented above. Such
constructions presents mixed distributions of the physical parameter which diffuses.
For instance the solution for α = 1 and α = 3 with the following weights can be
written:

T (r, t) =
1

t
e−

r2

4Dt −0.1
1

t3
e−

r2

4Dt

(
1− 1

2D

r2

t
+

1

32D2

r4

t2

)
. (27)

The form of the linear combination (27) can be seen in Fig. 5.
Regarding initial conditions we take the following initial distribution at time

t= 0

g(x0,y0) =Heaviside(9−x20) ·Heaviside(9−y20). (28)
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Fig. 4 – Solution of the heat equation for α= 4, with K0 = 1, D = 1.

The solution in this case can be found from the convolution integral [44]

T (x,y, t)=
1

4πt

∫ ∞
∞

Heaviside(9−x20)·Heaviside(9−y20)e−
(x−x0)

2+(y−y0)
2

4t dx0dy0.

(29)
Here for simplicity we have taken D = 1. Evaluating this integral one gets

T (x,y, t) =
1

4

[
erf

(
3

2
√
t
+

x

2
√
t

)
erf

(
3

2
√
t
+

y

2
√
t

)
−erf

(
3

2
√
t
+

x

2
√
t

)
erf

(
− 3

2
√
t
+

y

2
√
t

)
−erf

(
− 3

2
√
t
+

x

2
√
t

)
erf

(
3

2
√
t
+

y

2
√
t

)
+erf

(
− 3

2
√
t
+

x

2
√
t

)
erf

(
− 3

2
√
t
+

y

2
√
t

)]
.

(30)
The form of this function for different times one can see on Fig. 6.

4. DISCUSSION: PROPERTIES OF NEW SOLUTIONS

The new solution implies new descriptions of mass or heat distribution, conse-
quently the integrals on full space of the new solutions are important. If one would
study mass diffusion, the integral on the whole space in case of concentration means
the total mass in the system which diffuses. In case of α = 1 the shape function f ,
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Fig. 5 – Linear combination of solutions related to α= 1 and α= 3.

Fig. 6 – The solution with given initial condition, related to time t= 1.5 a), and t= 3.5 b).

with the argument η =
√
x2+y2/

√
t= r/

√
t has the integral∫ ∞

−∞

∫ ∞
−∞

f(η)dxdy =

∫ ∞
0

f(η)2πrdr =

∫
e−

r2

4Dt 2πrdr = 4πDt. (31)
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This means, that for the value of T (r, t)∫ ∞
0

T (r, t)2πrdr =

∫
K

1

t
e−

r2

4Dt 2πrdr =K4πD. (32)

If T (r, t) stand for the concentration, theK4πD is the total mass in the system which
can be fixed, by the constant K, as it will discussed further later.

The next relevant value is α= 2. The integral of the shape function in itself∫ ∞
−∞

f(η)dη = e
−η2
4D

(
1− η2

4D

)
=
√
πD. (33)

Taking into account, that from physical point of view η depends on two spatial vari-
ables η =

√
x2+y2/

√
t = r/

√
t, the integral on the whole two dimensional space

turns out to be∫ ∞
0

f(η)2πrdr =

∫ ∞
0

e
−η2
4D

(
1− η2

4D

)
2πrdr = lim

r→∞
πr2e

−r2
4Dt = 0. (34)

Consequently, we arrive to the important information∫ ∞
0

T (r, t)2πrdr =

∫ ∞
0

1

t2
e
−r2
4Dt

(
1− r2

4Dt

)
2πrdr = 0, (35)

for any finite time. This fact means, that the solution corresponding to α= 2, which
follows the Gaussian (α= 1), has integral zero on the whole two dimensional space.

For α= 3 we have for the integral of the shape function∫ ∞
−∞

f(η)dη = e
−η2
4D

(
1− η2

2D
+

η4

32D

)
=

3

4

√
πD. (36)

In two dimensions∫ ∞
0

f(η)2πrdr=

∫ ∞
0

e
−η2
4D

(
1− η2

2D
+

η4

32D

)
2πrdr= lim

r→∞
π
1

8

r2e
−r2
4Dt (8Dt− r2)

Dt
=0.

(37)
and ∫ ∞

0
T (r, t)2πrdr =

∫ ∞
0

1

t3
e
−r2
4Dt

(
1− r2

2Dt
+

r4

32Dt

)
2πrdr = 0. (38)

This means that a linear combination of the type (27) reflects a certain local
distribution of heat, although the relevant cumulative part is determined by (32).

5. THE TWO-DIMENSIONAL RADIAL EQUATION WITH CONSTANT SOURCE TERM

The diffusion equation with different source terms has been studied especially
for one dimension [39]. If one consider complex diffusion coefficient with possible
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further terms in the equation one may arrive to the Schrödinger or a family of similar
equations [45, 46].

At this point, we add a constant source term to the two dimensional heat diffu-
sion equation in its radial form

∂T

∂t
=D

1

r

∂

∂r

(
r
∂T

∂r

)
+D

1

r2
∂2T

∂θ2
+ q. (39)

where q indicates a constant source.
Applying the transformation (2) one arrive to the following ODE

−αt−α−1f −βt−α−1η∂f
∂η

=D
1

η
t−α−2β

∂f

∂η
+Dt−α−2β

∂2f

∂η2
+ q. (40)

All the terms has the same long time decay if

−α−1 = 0 (41)

−α−2β = 0. (42)

The explicit values for α and β are

α = −1 (43)

β =
1

2
. (44)

The final differential equation for f as a function of η = x/
√
t is

f − 1

2
η
∂f

∂η
=D

1

η

∂f

∂η
+D

∂2f

∂η2
+ q. (45)

Introducing the function h(η) = f(η)− q, we arrive to the equation

h− 1

2
η
∂h

∂η
=D

1

η

∂h

∂η
+D

∂2h

∂η2
. (46)

This equation is invariant under the transformation η → −η, by this we expect an
even solution. Inserting the following polynomial expression into the differential
equation of h

h(η) =A0+A1η
2+ ... (47)

– where A0 and A1 are constants –, we get by direct substitution

A1 =A0
1

4D
. (48)

The general solution of (46) is

h(η) =A1(4D+η2)+A2e
− η2

4DKummerU
(
2,1,

η2

4D

)
. (49)

whereA1 andA2 are constants depending on the boundary conditions of the problem.
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6. CONCLUSIONS

The work considers the two dimensional radial heat diffusion equation. The
equation describes the phenomena, when diffusion occur with cylindrical symmetry.
There are solutions of this equation, depending on the boundary conditions of the
problem. Here we considered the case for infinite horizon, when heat can diffuse in
remote areas without constraint. There are more solution of this problem, where the
physically relevant ones decay in time. We also found a countable set of solutions,
one of them is the basic generic Gaussian solution, and there are further solutions,
which can be superposed to the basic solution depending on the conditions of the
problem.
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12. I.F. Barna and L. Mátyás, Advanced analytic self-similar solutions of regular and irregular diffu-
sion equations, Mathematics 10, 3281 (2022).
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